AI Learning Accelerator
Jason Prentice
Free

Mapping the Global Supply Chain Graph

Andreas Mueller, PhD
Free

Introduction to Machine Learning

This talk gives a general introduction to machine learning, as well as introduces practical tools for you to apply machine learning in your research.

Tyler Freckmann
Free

Deep Learning in Real-Time

We will take a tour of different DL algorithms and applications, learn how different DL models are built, and see how to deploy DL models for real-time processing with SAS technology.

Trevor Grant
Free

Pavlov’s Sandman: Issues detecting snorers, training oneself not to snore via shock collar, war crime technicalities, and how to avoid all three

This talk is the journal of the explorations of a total novice audio analyst, seeking to correctly identify snores, and shock himself appropriately.

Stephen Lawrence
Free

Applied Finance - The Third Culture

In this session we explore why it is important that we bridge the gap between the traditional data science cultures and applied finance.

Amit Surana, PhD
Free

Applications of Deep Learning in Aerospace and Building Systems

This talk demonstrates using DBN, DAE, DRL and GAN in five different aerospace and building systems applications.

Michael Bell, PhD
Free

Machine Learning for Mobile Sensing Applications

In this talk we’ll detail the kinds of sensor data available from mobile phones and other smart devices.

Lukas Biewald
Free

Deep Learning Techniques for Vision

This is an extremely hands-on course to take students from little knowledge of deep learning to comfort building vision models with Keras and TensorFlow.

Buck Woody
Free

Standardized Data Science: The Team Data Science Data Process - with a practical, example in Python

Sean Patrick Gorman, PhD & Steven Pousty
Free

How to use Satellite Imagery to be a Machine Learning Mantis Shrimp

In this session we are going to start by showing you how satellite imagery actually allows you to “see” in more bands of color than the mantis (how about 26 bands) – each band is a massive amount of data about the earth.

Joshua Cook
Free

Engineering For Data Science

This talk will discuss Docker as a tool for the data scientist.

William Richoux
Free

Crawling the internet Data Science Within a Large Engineering System

We will discuss some of the special considerations impacting a data scientist when designing solutions to improve decision-making deep within software infrastructure.

Matthew Rubashkin, PhD
Free

Building an Image Search Service from Scratch

We are bringing a workshop on how you would go about building your representations, both for image and text data.

Nisha Talagala
Free

Bringing Your Deep Learning Algorithms to Life: From Experiments to Production Use

We will learn how to take Machine Learning and Deep Learning programs into a production use case and manage the full production lifecycle.

Sourav Dey
Free

Applications of Mixed Effects Random Forests

Michael Mahoney, PhD
Free

Matrix Algorithms at Scale: Randomization and using Alchemist to bridge the Spark-MPI gap

We describe use cases from scientific data analysis that motivated the development of Alchemist and that benefit from this system.

Kirk Borne
Free

Solving the Data Scientist's Dilemma - The Cold Start Problem

How can you maximize the data science outcomes, benefits, and applications when faced with the cold start problem?

Jan Freyberg
Free

Interactive data visualization in Python

We will go through python libraries that make this extra development as frictionless as possible, and produce interactive visualizations with as little code as possible.

Colin Gillespie
Free

Getting to Grips with the Tidyverse (R)

In this tutorial, we'll cover some of the core features of the tidyverse, such as dplyr (the workhorse of the tidyverse), string manipulation, linking directly to databases and the concept of tidy data.

Alexander Spangher
Free

PROJECT FEELS: DEEP TEXT MODELS FOR PREDICTING THE EMOTIONAL RESONANCE OF NEW YORK TIMES ARTICLES

Topics discussed will be active learning, deep learning, Bayesian inference and causality.

Dr. Catherine Havasi
Free

TRANSFER LEARNING: APPLICATIONS FOR NATURAL LANGUAGE UNDERSTANDING

This talk focuses on language related use cases for customer service, search, question answer, self-help and consumer finance. We'll also have some fun with applications of transfer learning.

Randy Olson, PhD
Free

THE PAST, PRESENT, AND FUTURE OF AUTOMATED MACHINE LEARNING

In this talk, Randy will draw from his AutoML research experience to discuss the benefits of AutoML and highlight some promising future directions of the field.

Sam Ransbotham, Ph.D
Free

THE ADOPTION OF AI IN BUSINESS: OPPORTUNITIES AND CHALLENGES

MIT Sloan Management Review’s recent research on AI and business strategy offers a "state of the state" of AI adoption inside corporations. This session will provide an overview of organizational readiness for and adoption of AI across sectors.

Isaac Reyes
Free

FROM NUMBERS TO NARRATIVE: DATA STORYTELLING

Session will cover: The essential elements of a good data story, Chart design and why it matters, Common chart design errors, and The Gestalt principals of visual perception and how they can be used to tell better stories with data.